Унитарное преобразование (квантовая механика) - Unitary transformation (quantum mechanics)

В квантовой механике , то уравнение Шредингера описывает , как система меняется со временем. Он делает это, связывая изменения в состоянии системы с энергией в системе (заданной оператором, называемым гамильтонианом ). Следовательно, как только гамильтониан известен, временная динамика в принципе известна. Все, что остается, - это вставить гамильтониан в уравнение Шредингера и найти состояние системы как функцию времени.

Однако часто уравнение Шредингера трудно решить ( даже с помощью компьютера ). Поэтому физики разработали математические методы, чтобы упростить эти проблемы и прояснить, что происходит физически. Один из таких приемов - применить к гамильтониану унитарное преобразование. Это может привести к упрощенной версии уравнения Шредингера, которое, тем не менее, имеет то же решение, что и исходное.

Трансформация

Унитарное преобразование (или изменение системы отсчета) может быть выражено в терминах зависящего от времени гамильтониана и унитарного оператора . При этом изменении гамильтониан преобразуется как:

.

Уравнение Шредингера применимо к новому гамильтониану. Решения непреобразованных и преобразованных уравнений также связаны соотношением . В частности, если волновая функция удовлетворяет исходному уравнению, то будет удовлетворять новое уравнение.

Вывод

Напомним , что по определению унитарной матрицы , . Начиная с уравнения Шредингера,

,

поэтому мы можем вставить по желанию. В частности, вставив его после, а также предварительно умножив обе стороны на , мы получим

.

Затем обратите внимание, что по правилу продукта

.

Вставляя еще один и переставляя, получаем

.

Наконец, объединение приведенных выше пунктов (1) и (2) приводит к желаемому преобразованию:

.

Если мы примем обозначения для описания преобразованной волновой функции, уравнения можно будет записать в более четкой форме. Например, можно переписать как

,

которое можно переписать в виде исходного уравнения Шредингера,

Исходная волновая функция может быть восстановлена ​​как .

Отношение к картине взаимодействия

Унитарные преобразования можно рассматривать как обобщение картины взаимодействия (Дирака) . В последнем подходе гамильтониан разбивается на не зависящую от времени часть и зависящую от времени часть,

.

В этом случае уравнение Шредингера принимает вид

, с .

Соответствие унитарному преобразованию можно показать, выбрав . Как результат,

Используя обозначения сверху, наш преобразованный гамильтониан принимает вид

Во-первых, обратите внимание, что, поскольку это функция от , они должны коммутировать . потом

,

который заботится о первом члене в преобразовании в , т . е . Затем используйте цепное правило для вычисления

который отменяется с другим . Очевидно, мы остались с уступкой, как показано выше.

Однако при применении общего унитарного преобразования не обязательно, чтобы оно было разбито на части или даже было функцией какой-либо части гамильтониана.

Примеры

Вращающаяся рама

Рассмотрим атом с двумя состояниями : основным и возбужденным . Атом имеет гамильтониан , где является частотой от света , связанного с г переходом . Теперь предположим, что мы освещаем атом двигателем с частотой, которая связывает два состояния, и что управляемый во времени гамильтониан имеет вид

для некоторой сложной силы привода . Из-за конкурирующих частотных шкал ( , и ) трудно предвидеть влияние привода (см. Управляемое гармоническое движение ).

Без привода фаза будет колебаться относительно . В представлении сферы Блоха системы с двумя состояниями это соответствует вращению вокруг оси z. Концептуально мы можем удалить этот компонент динамики, введя вращающуюся систему отсчета, определяемую унитарным преобразованием . При таком преобразовании гамильтониан принимает вид

.

Если частота возбуждения равна частоте перехода ge , возникнет резонанс , и тогда приведенное выше уравнение сводится к

.

Не вдаваясь в подробности, мы уже можем предсказать, что динамика будет включать колебания между основным и возбужденным состояниями на частоте .

В качестве другого предельного случая предположим, что привод находится далеко от резонанса . Мы можем выяснить динамику в этом случае, не решая непосредственно уравнение Шредингера. Предположим, система запускается в основном состоянии . Первоначально гамильтониан будет заполнять некоторую составляющую . Однако через некоторое время он заполнит примерно такое же количество, но с совершенно другой фазой. Таким образом, эффект нерезонансного возбуждения будет иметь тенденцию нейтрализоваться. Это также можно выразить, сказав, что в структуре атома быстро вращается нерезонансный двигатель .

Эти концепции проиллюстрированы в таблице ниже, где сфера представляет сферу Блоха , стрелка представляет состояние атома, а рука представляет двигатель.

Лабораторная рама Вращающаяся рама
Резонансный драйв
Резонансный драйв в лабораторной раме
Резонансный драйв в кадре, вращающемся вместе с атомом
Внерезонансный привод
Нерезонансный привод в лабораторной раме
Внерезонансный драйв в раме, вращающейся с атомом

Смещенная рама

Приведенный выше пример также можно было бы проанализировать на картинке взаимодействия. Однако следующий пример труднее проанализировать без общей формулировки унитарных преобразований. Рассмотрим два гармонических осциллятора , между которыми мы хотели бы создать взаимодействие светоделителя ,

.

Это было достигнуто экспериментально с помощью двух резонаторов СВЧ-диапазона, служащих в качестве и . Ниже мы сделаем набросок анализа упрощенной версии этого эксперимента.

В дополнении к микроволновым полостям, эксперимент также вовлечен transmon кубит , в сочетание с обоих режимами. Кубит запускается одновременно на двух частотах, и , для которых .

Кроме того, существует много членов четвертого порядка, связывающих моды , но большинством из них можно пренебречь. В этом эксперименте важными станут два таких члена:

.

(Hc - это сокращение от эрмитово сопряженного .) Мы можем применить преобразование смещения к моде . Для тщательно отобранных амплитуд, это преобразование будет отменена в то же время перемещения оператора лестницы, . Это оставляет нас с

.

Расширяя это выражение и отбрасывая быстро вращающиеся члены, мы получаем желаемый гамильтониан:

.

Связь с формулой Бейкера-Кэмпбелла-Хаусдорфа

Обычно операторы, участвующие в унитарных преобразованиях, записываются как экспоненты операторов , как показано выше. Кроме того, операторы в экспонентах обычно подчиняются соотношению , так что преобразование оператора есть ,. Теперь, вводя коммутатор итератора,

мы можем использовать специальный результат формулы Бейкера-Кэмпбелла-Хаусдорфа, чтобы записать это преобразование в компактном виде:

или, в полной форме, для полноты,

использованная литература