Математическая константа - Mathematical constant

Математическая константа является ключевым числом , значение которого устанавливается однозначное определение, часто называют символом (например, буквами алфавита ), или по именам математиков для облегчения его использования на несколько математических задачах . Константы возникают во многих областях математики , при этом такие константы, как e и π, встречаются в таких разнообразных контекстах, как геометрия , теория чисел и исчисление .

Что означает, что константа возникает «естественно» и что делает константу «интересной», в конечном счете, является делом вкуса, поскольку некоторые математические константы примечательны больше по историческим причинам, чем из-за присущего им математического интереса. Наиболее популярные константы изучались на протяжении веков и вычислялись с точностью до многих десятичных знаков.

Все именованные математические константы являются определяемыми числами и обычно также являются вычисляемыми числами ( константа Чейтина является существенным исключением).

Основные математические константы

Это константы, с которыми можно столкнуться во время дошкольного образования во многих странах.

Постоянная Архимеда π

Длина окружности диаметра 1 равна π .

Константа π (пи) имеет естественное определение в евклидовой геометрии как отношение между окружности и диаметра окружности. Его можно найти во многих других областях математики: например, в интеграле Гаусса , в комплексных корнях из единицы и в вероятностных распределениях Коши . Однако его повсеместное распространение не ограничивается чистой математикой. Он появляется во многих формулах в физике, и некоторые физические константы наиболее естественно определяются с помощью π или его обратного факторинга. Например, основное состояние волновой функции от водорода атома

где - радиус Бора .

π - иррациональное число .

Числовое значение π составляет приблизительно 3,1415926536 (последовательность A000796 в OEIS ). Запоминание все более точных цифр числа π - это стремление к установлению мирового рекорда.

Мнимая единица i

Мнимая единица i на комплексной плоскости . Действительные числа лежат на горизонтальной оси, а мнимые числа - на вертикальной оси.

Мнимая единица или единица мнимое число , обозначается как I , представляет собой математическое понятие , которое расширяет реальное число системы к комплексному числу системе сердечника мнимой единицы является то , что я 2 = -1 . Термин « мнимое » был придуман, потому что не существует ( реального ) числа с отрицательным квадратом .

Фактически существует два комплексных квадратных корня из −1, а именно i и - i , точно так же, как есть два комплексных квадратных корня из любого другого действительного числа (кроме нуля , который имеет один двойной квадратный корень).

В контекстах, где символ i неоднозначен или проблематичен, иногда используется j или греческая йота ( ι ). Это , в частности , имеет место в области электротехники и управления инженерных систем , где мнимая единица часто обозначается через J , так как я обычно используется для обозначения электрического тока .

Число Эйлера e

Экспоненциальный рост (зеленый) описывает многие физические явления.

Число Эйлера e , также известное как константа экспоненциального роста , встречается во многих областях математики, и одним из возможных его определений является значение следующего выражения:

Константа e неразрывно связана с экспоненциальной функцией .

Швейцарский математик Якоб Бернулли обнаружил , что е возникает в сложных процентах : Если Запускается аккаунт на $ 1, и дают проценты по годовой ставке R , тогда как количество периодов начисления в год стремится к бесконечности (ситуации , известные как непрерывное начисление ), то сумма денег в конце года приблизится к e R долларов.

Константа e также имеет приложения в теории вероятностей , где она возникает не явно связанным с экспоненциальным ростом способом. В качестве примера предположим, что в игровой автомат с вероятностью выигрыша один из n играют n раз, тогда для больших n (например, одного миллиона) вероятность того, что ничего не будет выиграно, будет стремиться к 1 / e, поскольку n стремится к бесконечность.

Другое применение e , частично открытое Якобом Бернулли вместе с французским математиком Пьером Раймоном де Монмором , связано с проблемой расстройств , также известной как проблема проверки шляпы . Здесь n гостей приглашены на вечеринку, и у двери каждый гость проверяет свою шляпу у дворецкого, который затем складывает их в помеченные коробки. Дворецкий не знает имен гостей, поэтому должен складывать их в коробки, выбранные наугад. Проблема де Монморта в том, какова вероятность того, что ни одна из шляп не попадет в нужную коробку. Ответ

который, когда n стремится к бесконечности, приближается к 1 / e .

е - иррациональное число .

Числовое значение e составляет приблизительно 2,7182818284 (последовательность A001113 в OEIS ).

Постоянная Пифагора 2

Корень квадратный из 2 равен длиной гипотенузы в виде прямоугольного треугольника с ногами длиной 1.

Квадратный корень из 2 , часто известный как корень 2 , радикал 2 , или постоянная Пифагор , и записываются в виде 2 , является положительным алгебраическим числом , что при умножении на себя, дает число 2 . Его более точно называют главным квадратным корнем из 2 , чтобы отличить его от отрицательного числа с таким же свойством.

Геометрически квадратный корень из 2 равен длине диагонали квадрата со сторонами, равными единице длины ; это следует из теоремы Пифагора . Вероятно, это было первое число, известное как иррациональное . Его числовое значение, усеченное до 65 знаков после запятой, составляет:

1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731 76679 73799 ... (последовательность A002193 в OEIS ).
Квадратный корень из 2.

Альтернативно, быстрое приближение 99/70 (≈ 1,41429) для квадратного корня из двух часто использовалось до обычного использования электронных калькуляторов и компьютеров . Несмотря на то, что знаменатель равен всего 70, оно отличается от правильного значения менее чем на 1/10 000 (приблизительно 7,2 × 10  −5 ).

Постоянная Теодора 3

Числовое значение 3 составляет приблизительно 1,7320508075 (последовательность A002194 в OEIS ).

Константы в высшей математике

Это константы, которые часто встречаются в высшей математике .

Константы Фейгенбаума α и δ

Бифуркационная диаграмма логистической карты.

Итерации непрерывных отображений служат простейшими примерами моделей динамических систем . Названные в честь математика-физика Митчелла Фейгенбаума , две константы Фейгенбаума появляются в таких итерационных процессах: они представляют собой математические инварианты логистических карт с квадратичными точками максимума и их бифуркационных диаграмм .

Логистическая карта - это полиномиальное отображение, которое часто называют архетипическим примером того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений. Карта была популяризирована в основополагающей статье 1976 года австралийского биолога Роберта Мэя , отчасти как демографическая модель с дискретным временем, аналогичная логистическому уравнению, впервые созданному Пьером Франсуа Ферхюльстом . Разностное уравнение предназначено для учета двух эффектов воспроизводства и голода.

Числовое значение α составляет приблизительно 2,5029. Числовое значение δ составляет приблизительно 4,6692.

Постоянная Апери ζ (3)

Константа Апери - это сумма ряда

Константа Апери - это иррациональное число, числовое значение которого приблизительно равно 1,2020569.

Несмотря на то что специальное значение дзеты - функции Римана , постоянная апери возникает , естественно , в ряде физических проблем, в том числе в второй и третьем порядке с точки зрения электрона «ы гиромагнитного отношения , вычисленным с помощью квантовой электродинамики .

Золотое сечение φ

Золотые прямоугольники в правильном икосаэдре
Явная формула для n- го числа Фибоначчи с использованием золотого сечения φ .

Число φ , также называемое золотым сечением , часто встречается в геометрии , особенно в фигурах с пятиугольной симметрией . Действительно, длина регулярного пятиугольника «s диагонали в ф раз его сторона. Вершины правильного икосаэдра - это вершины трех взаимно ортогональных золотых прямоугольников . Кроме того, он появляется в последовательности Фибоначчи , связанной с ростом за счет рекурсии . Кеплер доказал, что это предел отношения последовательных чисел Фибоначчи. Золотое сечение имеет самую медленную сходимость из всех иррациональных чисел. Именно по этой причине, один из худших случаев из теоремы Лагранжа приближения и является экстремальным случаем неравенства Гурвицы для диофантовых приближений . Возможно, поэтому углы, близкие к золотому сечению, часто проявляются при филлотаксисе (росте растений). Это примерно равно 1.6180339887498948482, а точнее 2⋅sin (54 °) =

Постоянная Эйлера – Маскерони γ

Площадь между двумя кривыми (красная) стремится к пределу, а именно к постоянной Эйлера-Маскерони.

Постоянная Эйлера – Маскерони определяется как следующий предел:

Константа Эйлера – Маскерони фигурирует в третьей теореме Мертенса и имеет отношение к гамма-функции , дзета-функции и множеству различных интегралов и рядов .

Пока еще неизвестно , будет ли это рационально или нет.

Числовое значение составляет приблизительно 0,57721.

Постоянная Конвея λ

Константа Конвея - это инвариантная скорость роста всех производных строк, аналогичная последовательности look-and-say (за исключением одной тривиальной).

Он задается единственным положительным вещественным корнем многочлена степени 71 с целыми коэффициентами.

Значение λ составляет приблизительно 1,30357.

Постоянная Хинчина K

Если действительное число r записано в виде простой непрерывной дроби :

где к являются натуральными числа для всех к , то, как русский математик Хинчины доказали в 1934 г. предел в п стремится к бесконечности из средних геометрических : ( а 1 2 ... п ) 1 / п существует и - константа, постоянная Хинчина , за исключением множества меры 0.

Числовое значение K составляет приблизительно 2,6854520010.

Постоянная Глейшера – Кинкелина A

Постоянная Глейшера – Кинкелина определяется как предел :

Это важная константа, которая появляется во многих выражениях для производной дзета-функции Римана . Его числовое значение составляет примерно 1,2824271291.

Математические курьезы и неопределенные константы

Простые представители множеств чисел

Эта вавилонская глиняная табличка дает приближение квадратного корня из 2 в четырех шестидесятеричных цифрах: 1; 24, 51, 10, с точностью до шести десятичных знаков .

Некоторые константы, такие как квадратный корень из 2 , постоянного Лиувилля и постоянной Champernowne :

не являются важными математическими инвариантами, но сохраняют интерес, будучи простыми представителями специальных наборов чисел, иррациональных чисел , трансцендентных чисел и нормальных чисел (в базе 10) соответственно. Открытие иррациональных чисел обычно приписывают пифагорейцу Гиппасу из Метапонта, который доказал, скорее всего геометрически, иррациональность квадратного корня из 2. Что касается постоянной Лиувилля, названной в честь французского математика Жозефа Лиувилля , то это было первое число, получившее название доказано трансцендентно.

Постоянная Чейтина Ω

В информатике подполе алгоритмической теории информации , константа хайтина реальное число , представляющее вероятность того, что случайно выбранная машина Тьюринга будет остановить, образовавшееся из - за строительства в Аргентину - американский математик и ученый Хайтин . Константа Чайтина, хотя и не вычислима , оказалась трансцендентной и нормальной . Константа Чейтина не универсальна, она сильно зависит от числового кодирования, используемого для машин Тьюринга; однако его интересные свойства не зависят от кодировки.

Неуказанные константы

Когда не указано иное, константы указывают классы похожих объектов, обычно функций, все равны до константы - технически говоря, это можно рассматривать как «подобие до константы». Такие константы часто появляются при работе с интегралами и дифференциальными уравнениями . Несмотря на то, что они не указаны, они имеют определенное значение, которое часто не имеет значения.

Решения с разными константами интегрирования .

В интегралах

Неопределенные интегралы называются неопределенными, потому что их решения единственны только с точностью до константы. Например, при работе с полем действительных чисел

где C , постоянная интегрирования , - произвольное фиксированное действительное число. Другими словами, каким бы ни было значение C , дифференцирование sin x + C по x всегда дает cos x .

В дифференциальных уравнениях

Аналогичным образом константы появляются в решениях дифференциальных уравнений, в которых задано недостаточно начальных значений или граничных условий . Например, обыкновенное дифференциальное уравнение y '  =  y ( x ) имеет решение Ce x, где C - произвольная постоянная.

При работе с уравнениями в частных производных константы могут быть функциями , постоянными по отношению к некоторым переменным (но не обязательно ко всем из них). Например, PDE

имеет решения f ( x , y ) =  C ( y ), где C ( y ) - произвольная функция от переменной  y .

Обозначение

Представление констант

Обычно числовое значение константы выражается десятичным представлением (или только его первыми цифрами). По двум причинам такое представление может вызвать проблемы. Во-первых, даже несмотря на то, что все рациональные числа имеют конечное или постоянно повторяющееся десятичное разложение, иррациональные числа не имеют такого выражения, что делает их невозможно полностью описать таким образом. Кроме того, десятичное представление числа не обязательно уникально. Например, два представления 0,999 ... и 1 эквивалентны в том смысле, что представляют одно и то же число.

Вычисление цифр десятичного разложения констант было обычным делом на протяжении многих веков. Например, немецкий математик XVI века Людольф ван Сеулен провел большую часть своей жизни, вычисляя первые 35 цифр числа Пи. Используя компьютеры и суперкомпьютеры , некоторые математические константы, включая π, e и квадратный корень из 2, были вычислены с точностью до ста миллиардов цифр. Были разработаны быстрые алгоритмы , некоторые из которых - что касается константы Апери - неожиданно быстрые.

Некоторые константы настолько отличаются от обычных, что были изобретены новые обозначения для их разумного представления. Число Грэма иллюстрирует это, поскольку используется нотация Кнута, направленная вверх .

Может быть интересно представить их с помощью непрерывных дробей для выполнения различных исследований, включая статистический анализ. Многие математические константы имеют аналитическую форму , то есть они могут быть построены с использованием хорошо известных операций, которые легко поддаются вычислению. Однако не все константы имеют известную аналитическую форму; Примерами являются постоянная Гроссмана и постоянная Фояса .

Символизация и именование констант

Обозначение констант буквами - частый способ сделать запись более краткой. Распространенное соглашение , инициированное Рене Декартом в 17 веке и Леонардом Эйлером в 18 веке, заключается в использовании строчных букв латинского или греческого алфавита при работе с константами в целом.

Однако для более важных констант символы могут быть более сложными и иметь дополнительную букву, звездочку , число, лемнискату или использовать другие алфавиты, такие как иврит , кириллица или готика .

Постоянная Erdős-Borwein Эмбри-Trefethen постоянная константа Бруна в течение близнеца простых констант Champernowne кардинальное число алеф нулю



Примеры различных видов обозначений констант.

Иногда символ, представляющий константу, представляет собой целое слово. Например, 9-летний племянник американского математика Эдварда Каснера придумал названия гугол и гуголплекс .

Другие названия либо связаны со значением константы ( универсальной параболическим постоянная , близнец премьером постоянная , ...) или к конкретному человеку ( постоянной Серпиньскому , постоянной Джозефсона , и так далее).

Универсальная параболическая константа представляет собой отношение, для любой параболы , от длины дуги параболического сегмента (красного цвета) , образованного LATUS прямой кишкой (синей) к фокальному параметру (зеленый).

Таблица избранных математических констант

Используемые сокращения:

R - рациональное число , I - иррациональное число (может быть алгебраическим или трансцендентным), A - алгебраическое число (иррациональное), T - трансцендентное число (иррациональное)
Gen - General , ореховые - Теория чисел , CHT - теория хаоса , Com - комбинаторика , Inf - теория информации , Ана - Математический анализ
Условное обозначение Ценить Имя Поле N Первое описание Количество известных десятичных цифр
0
= 0 Нуль Gen р пользователя c. 500 г. до н.э. все
1
= 1 Один , Единство Gen р все
я
= –1 Мнимая единица , единица мнимого числа Ген , Ана А пользователя c. 1500 все
π
≈ 3,14159 26535 89793 23846 26433 83279 50288 Pi , Архимед «константы или Людольф число» S Ген , Ана Т пользователя c. 2600 г. до н.э. 62 831 853 071 796
е
≈ 2,71828 18284 59045 23536 02874 71352 66249 е , постоянная Напье или число Эйлера Ген , Ана Т 1618 31 415 926 535 897
2
≈ 1,41421 35623 73095 04880 16887 24209 69807 Константа Пифагора , квадратный корень из 2 Gen А пользователя c. 800 г. до н.э. 10 000 000 000 000
3
≈ 1,73205 08075 68877 29352 74463 41505 87236 Константа Теодора , корень квадратный из 3 Gen А пользователя c. 800 г. до н.э. 2,199,023,255,552
5
≈ 2,23606 79774 99789 69640 91736 68731 27623 квадратный корень из 5 Gen А пользователя c. 800 г. до н.э. 2,199,023,255,552
≈ 0,57721 56649 01532 86060 65120 90082 40243 Константа Эйлера – Маскерони Gen , NuT 1735 г. 600 000 000 100
≈ 1,61803 39887 49894 84820 45868 34365 63811 Золотое сечение Gen А пользователя c. 200 г. до н.э. 10 000 000 000 000
постоянная де Брейна – Ньюмана NuT , Ана 1950 никто
M 1
≈ 0,26149 72128 47642 78375 54268 38608 69585 Константа Мейселя – Мертенса Орех 1866
1874
8 010
≈ 0,28016 94990 23869 13303 Постоянная Бернштейна Ана
≈ 0,30366 30028 98732 65859 74481 21901 55623 Постоянная Гаусса – Кузмина – Вирсинга. Com 1974 г. 385
≈ 0,35323 63718 54995 98454 35165 50432 68201 Постоянная Хафнера – Сарнака – МакКерли Орех 1993 г.
L
≈ 0,5 Постоянная Ландау Ана 1
Ω
≈ 0,56714 32904 09783 87299 99686 62210 35554 Постоянная омега Ана Т
,
≈ 0,62432 99885 43550 87099 29363 83100 83724 Константа Голомба – Дикмана Com , NuT 1930
1964
≈ 0,64341 05462 Постоянная каэна Т 1891 г. 4000
C 2
≈ 0,66016 18158 46869 57392 78121 10014 55577 Двойная простая константа Орех 5 020
≈ 0,66274 34193 49181 58097 47420 97109 25290 Предел Лапласа
*
≈ 0,70258 Постоянная Эмбри – Трефетена Орех
K
≈ 0,76422 36535 89220 66299 06987 31250 09232 Постоянная Ландау – Рамануджана Орех 30 010
В 4
≈ 0,87058 838 Константа Бруна для простых четверок Орех 8
K
≈ 0,91596 55941 77219 01505 46035 14932 38411 Каталонская постоянная Com 1 000 000 001 337
L
= 1 Постоянная Лежандра Орех р все
K
≈ 1,13198 824 Постоянная Вишваната Орех 8
≈ 1.20205 69031 59594 28539 97381 61511 44999 Постоянная Апери я 1979 г. 1 200 000 000 100
≈ 1,30357 72690 34296 39125 70991 12152 55189 Постоянная Конвея Орех А
≈ 1,30637 78838 63080 69046 86144 92602 60571 Постоянная Миллса Орех 1947 г. 6850
≈ 1,32471 79572 44746 02596 09088 54478 09734 Пластическая постоянная Орех А 1928 г.
≈ 1.45136 92348 83381 05028 39684 85892 02744 Константа Рамануджана – Зольднера Орех я 75 500
≈ 1.45607 49485 82689 67139 95953 51116 54356 Постоянная Бэкхауса
≈ 1,46707 80794 Постоянная Портера Орех 1975 г.
≈ 1,53960 07178 Квадратная ледяная постоянная Либа Com А 1967
E B
≈ 1,60669 51524 15291 76378 33015 23190 92458 Константа Эрдеша – Борвейна Орех я
≈ 1,70521 11401 05367 76428 85514 53434 50816 Постоянная Нивена Орех 1969 г.
В 2
≈ 1,90216 05831 04 Константа Бруна для простых чисел-близнецов Орех 1919 г. 12
П 2
≈ 2,29558 71493 92638 07403 42980 49189 49039 Универсальная параболическая постоянная Gen Т
≈ 2,50290 78750 95892 82228 39028 73218 21578 Постоянная Фейгенбаума ЧТ
K
≈ 2,58498 17595 79253 21706 58935 87383 17116 Постоянная Серпинского
≈ 2,68545 20010 65306 44530 97148 35481 79569 Постоянная Хинчина Орех 1934 г. 7350
F
≈ 2,80777 02420 28519 36522 15011 86557 77293 Константа Франсена – Робинсона Ана
≈ 3,27582 29187 21811 15978 76818 82453 84386 Постоянная Леви Орех
≈ 3,35988 56662 43177 55317 20113 02918 92717 Взаимная постоянная Фибоначчи я
≈ 4,66920 16091 02990 67185 32038 20466 20161 Постоянная Фейгенбаума ЧТ 1975 г.

Смотрите также

Примечания

внешние ссылки