Лейденская банка - Leyden jar

Ранняя лейденская банка с водой, состоящая из бутылки с металлической иглой, проходящей через пробку для контакта с водой.
Позже более распространенный тип с использованием металлической фольги, 1919 г.

Лейден банка (или Лейден банк или архаический, иногда Kleistian банки ) представляет собой электрический компонент , который хранит высоковольтный электрический заряд (от внешнего источника) между электрическими проводниками на внутреннем и внешней стороне стеклянной банки. Обычно он состоит из стеклянной банки с металлической фольгой, приклеенной к внутренней и внешней поверхности, и металлического наконечника, выступающего вертикально через крышку банки для контакта с внутренней фольгой. Это была оригинальная форма конденсатора (также называемого конденсаторным ).

Его изобретение было открытием, сделанным независимо немецким священнослужителем Эвальдом Георгом фон Клейстом 11 октября 1745 года и голландским ученым Питером ван Мушенбруком из Лейдена (Лейден) в 1745–1746 годах. Изобретение было названо в честь города.

Лейденская банка использовалась для проведения многих ранних экспериментов с электричеством, и ее открытие имело фундаментальное значение для изучения электростатики . Это было первое средство накопления и сохранения электрического заряда в больших количествах, которые могли быть разряжены по желанию экспериментатора, тем самым преодолевая значительный предел ранних исследований электропроводности. Лейденские сосуды до сих пор используются в образовании для демонстрации принципов электростатики.

История

Обнаружение лейденской банки в лаборатории Мушенбрука. Статическое электричество, создаваемое электростатическим генератором вращающейся стеклянной сферы, передавалось цепью через подвешенный стержень к воде в стакане, который держал помощник Андреас Кунеус. В воде накопился большой заряд, а в руке Кунея на стекле - противоположный заряд. Когда он коснулся погружающейся в воду проволоки, он получил сильный удар.
Батарея из четырех заполненных водой банки лейденской, Музей Бургаве , Лейден

В Древние греки уже знали , что куски янтаря может привлечь легкие частицы после того, как трут. Янтарь электризуется за счет трибоэлектрического эффекта , механического разделения заряда в диэлектрике . Греческое слово, обозначающее янтарь, - ἤλεκτρον («ēlektron»), оно является источником слова «электричество». Считается, что философ-досократик Фалес Милетский случайно прокомментировал явление электростатического заряда из-за своей веры в то, что даже в безжизненных вещах есть душа, отсюда и популярная аналогия искры.

Около 1650 года Отто фон Герике построил примитивный электростатический генератор : серный шар, вращающийся на валу. Когда Герике прижал руку к мячу и быстро повернул вал, возник статический электрический заряд . Этот эксперимент вдохновил на разработку нескольких форм «машин трения», которые очень помогли в изучении электричества.

Лейденская банка была фактически независимо открыта двумя сторонами: немецким дьяконом Эвальдом Георгом фон Клейстом , сделавшим первое открытие, и голландскими учеными Питером ван Мушенбруком и Андреасом Кунеусом, которые выяснили, как она работает, только когда их держали в руке.

Лейденская банка - устройство высокого напряжения; считается, что максимум ранние лейденские кувшины можно было заряжать от 20 000 до 60 000 вольт. Центральный стержневой электрод на конце имеет металлический шарик для предотвращения утечки заряда в воздух из-за коронного разряда . Сначала он был использован в электростатических экспериментах, а затем в высоковольтном оборудовании, таком как радиопередатчики с искровым разрядником и аппараты для электротерапии .

Фон Клейст

Эвальд Георг фон Клейст открыл огромные возможности хранения лейденской банки, работая над теорией, которая рассматривала электричество как жидкость, и надеялся, что стеклянная банка, наполненная спиртом, «захватит» эту жидкость. Он был диаконом в соборе Камина в Померании.

В октябре 1745 года фон Клейст попытался накапливать электричество в маленькой бутылочке с лекарством, наполненной спиртом, с гвоздем, вставленным в пробку. Он продолжал эксперимент, разработанный Георгом Матиасом Бозе, в котором через воду пропускали электричество, чтобы поджечь алкогольные духи. Он попытался зарядить баллон от большого первичного проводника (изобретенного Бозе), подвешенного над его машиной трения.

Клейст был убежден, что в стакане можно собрать и удержать значительный электрический заряд, который, как он знал, будет препятствием для выхода «жидкости». Он получил сильное потрясение от устройства, когда случайно задел гвоздь через пробку, все еще держа бутылку в другой руке. Он сообщил свои результаты, по крайней мере, пяти различным электрическим экспериментаторам в нескольких письмах с ноября 1745 года по март 1746 года, но не получил никакого подтверждения того, что они повторили его результаты, до апреля 1746 года. Даниэль Гралат узнал об эксперименте Клейста, увидев письмо к Пол Свитлицки, написанный в ноябре 1745 года. После неудачной первой попытки Гралата воспроизвести эксперимент в декабре 1745 года он написал Клейсту для получения дополнительной информации (и ему сказали, что эксперимент будет работать лучше, если будет использована трубка, наполовину заполненная спиртом). Гралату (в сотрудничестве с Готфридом Рейгером  [ де ] ) удалось добиться желаемого эффекта 5 марта 1746 года, держа в одной руке небольшой стеклянный флакон с лекарством с гвоздем внутри, поднося его к электростатическому генератору, а затем двигая другой рукой. близко к ногтю. Клейст не понимал значения его дирижирующей руки, держащей бутылку - и он, и его корреспонденты не хотели держать устройство, когда им сказали, что шок может отбросить их через всю комнату. Прошло некоторое время, прежде чем студенты-соратники Клейста в Лейдене пришли к выводу, что рука является важным элементом.

Мушенбрук и Куней

Изобретение лейденской кувшины долгое время приписывали Питеру ван Мушенбруку , профессору физики в Лейденском университете , который также руководил семейным литейным заводом по отливке латунных канонет и небольшим бизнесом ( De Oosterse Lamp - «Восточная лампа»), который занимался научными и научными разработками. медицинские инструменты для новых университетских курсов по физике и для джентльменов-ученых, стремящихся создать свои собственные «кабинеты» раритетов и инструментов .

Эвальду Клейсту приписывают, что он первым применил жидкую аналогию для электричества и продемонстрировал это Бозе, нарисовав искры из воды пальцем.

Как и Клейст, Мушенбрук также интересовался и пытался повторить эксперимент Бозе. В это время адвокат Андреас Куней узнал об этом эксперименте из лаборатории Мушенбрука, и Куней попытался воспроизвести эксперимент дома с предметами домашнего обихода. Используя стакан пива, Куней не смог заставить его работать.

Куней был первым, кто обнаружил, что такая экспериментальная установка может вызвать сильное потрясение, когда он держал свою банку в руке во время зарядки, а не помещал ее на изолированную подставку, не понимая, что это была стандартная практика, таким образом сделав себя частью схема. Он сообщил о своей процедуре и опыте Алламанду , коллеге Мушенбрука. Алламанд и Мушенбрук также получили серьезные потрясения. Мушенбрук сообщил об эксперименте в письме от 20 января 1746 года Рене Антуану Фершо де Реомюру , который был назначенным корреспондентом Мушенбрука в Парижской академии. Аббат Нолле прочитал этот отчет, подтвердил эксперимент, а затем прочитал письмо Мушенбрука на публичном собрании Парижской академии в апреле 1746 года (перевод с латыни на французский).

Магазином Musschenbroek во Франции по продаже «кабинетных» устройств его компании был аббат Нолле (который начал создавать и продавать дубликаты инструментов в 1735 году). Затем Нолле дал электрическому накопителю название «Лейденская банка» и продвигал его как особый тип колбы на свой рынок состоятельных людей с научным любопытством. Таким образом, «клейстийская банка» рекламировалась как лейденская , и как ее обнаружили Питер ван Мушенбрук и его знакомый Андреас Кунеус. Мушенбрук, однако, никогда не утверждал, что он его изобрел, и некоторые думают, что Куней упоминался только для того, чтобы уменьшить его авторитет.

Дальнейшее развитие

Через несколько месяцев после доклада Мушенбрука о том, как надежно создать лейденскую банку, другие исследователи-электрики начали создавать и экспериментировать с собственными лейденскими банками. Один из его первоначальных интересов состоял в том, чтобы увидеть, можно ли увеличить общую сумму возможного обвинения.

Иоганн Генрих Винклер , чей первый опыт работы с одной лейденской банкой был описан в письме Королевскому обществу от 29 мая 1746 года, 28 июля 1746 года соединил три лейденские банки вместе в своего рода электростатическую батарею. В 1746 году аббат Нолле исполнил два эксперименты по назиданию короля Франции Людовика XIV , в первом из которых он разрядил лейденскую банку через 180 королевских гвардейцев , а во втором - через большее количество картезианских монахов ; все они прыгнули в воздух более или менее одновременно. Мнения ни короля, ни подопытных не были записаны. Даниэль Гралат сообщил в 1747 году, что в 1746 году он проводил эксперименты по соединению двух или трех сосудов, возможно, последовательно . В 1746-1748 годах Бенджамин Франклин экспериментировал с последовательной загрузкой лейденских сосудов и разработал систему, состоящую из 11 стеклянных панелей с тонкими свинцовыми пластинами, приклеенными с каждой стороны, а затем соединенными вместе. Он использовал термин «электрическая батарея» для описания своей электростатической батареи в письме 1749 года о своих электрических исследованиях в 1748 году. Возможно, что выбор Франклина слова « батарея» был вдохновлен юмористической игрой слов в конце своего письма, где он писал Среди прочего, о приветствии исследователей-электриков из артиллерийской батареи . Это первое зарегистрированное использование термина « электрическая батарея» . Множественные и быстрые разработки по соединению лейденских сосудов в период 1746–1748 гг. Привели к появлению множества расходящихся сообщений во вторичной литературе о том, кто создал первую «батарею», соединив лейденские сосуды, были ли они последовательно или параллельно, и кто первым использовал термин «аккумулятор». Позднее этот термин использовался для сочетания нескольких электрохимических ячеек - современное значение термина «батарея».

Шведский физик, химик и метеоролог Тоберн Бергман перевел большую часть работ Бенджамина Франклина об электричестве на немецкий язык и продолжил изучение электростатических свойств.

Начиная с конца 1756 года, Франц Эпинус в сложном взаимодействии сотрудничества и независимой работы с Йоханом Вильке разработал «воздушный конденсатор», разновидность лейденской банки, с использованием воздуха, а не стекла в качестве диэлектрика. Этот функционирующий аппарат без стекла создал проблему для объяснения Бенджамина Франклина лейденской банки, в котором утверждалось, что заряд находится в стекле.

Начиная с конца 18 века, он использовался в викторианской медицине в области электротерапии для лечения различных заболеваний электрическим током. К середине XIX века лейденская банка стала достаточно распространенной, и писатели могли предположить, что их читатели знают и понимают ее основную работу. Примерно на рубеже веков он начал широко использоваться в передатчиках с искровыми разрядниками и в медицинском электротерапевтическом оборудовании. К началу 20-го века улучшенные диэлектрики и необходимость уменьшить их размер, а также нежелательные индуктивность и сопротивление для использования в новой технологии радио привели к тому, что лейденская банка превратилась в современную компактную форму конденсатора .

Дизайн

Строительство лейденской банки.

Типичная конструкция состоит из стеклянного сосуда с проводящей оловянной фольгой, покрывающей внутреннюю и внешнюю поверхности. Покрытия из фольги не доходят до горловины банки, чтобы предотвратить искрение заряда между фольгами. Металлический стержневой электрод выступает через непроводящую пробку в горловине сосуда, электрически соединенный некоторыми средствами (обычно подвесной цепью) с внутренней фольгой, чтобы позволить ей заряжаться. Банку заряжают электростатическим генератором или другим источником электрического заряда, подключенным к внутреннему электроду, в то время как внешняя фольга заземлена . На внутренней и внешней поверхностях банки хранятся одинаковые, но противоположные заряды.

Изначально устройство представляло собой стеклянную бутылку, частично наполненную водой, с закрывающей ее металлической проволокой, проходящей через пробку. Роль внешней пластины обеспечивается рукой экспериментатора. Вскоре Джон Бевис обнаружил (в 1747 году), что можно покрыть внешнюю поверхность сосуда металлической фольгой, и он также обнаружил, что может достичь того же эффекта, используя стеклянную пластину с металлической фольгой с обеих сторон. Эти разработки вдохновили Уильяма Ватсона в том же году на создание сосуда с внутренней и внешней облицовкой из металлической фольги, что исключает необходимость использования воды.

Ранние экспериментаторы (такие как Бенджамин Уилсон в 1746 году) сообщили, что чем тоньше диэлектрик и чем больше поверхность, тем больший заряд может быть накоплен.

Дальнейшие разработки в области электростатики показали, что диэлектрический материал не важен, но увеличил накопительную способность ( емкость ) и предотвратил образование дуги между пластинами. Две пластины, разделенные небольшим расстоянием, также действуют как конденсатор даже в вакууме .

Хранение заряда

"Рассекаемая" лейденская банка, 1876 г.
Измерительная лейденская банка

Первоначально считалось, что заряд хранился в воде в ранних лейденских кувшинах. В 1700-х годах американский государственный деятель и ученый Бенджамин Франклин провел обширные исследования как заполненных водой, так и фольгированных лейденских кувшинов, что привело его к выводу, что заряд хранился в стакане, а не в воде. Популярный эксперимент Франклина, который, кажется, демонстрирует это, включает в себя разборку банки после того, как она была заряжена, и демонстрация того, что на металлических пластинах может быть обнаружен небольшой заряд, и, следовательно, он должен быть в диэлектрике . Первый задокументированный случай этой демонстрации содержится в письме Франклина 1749 года. Франклин разработал «расслаиваемую» лейденскую банку (справа) , которая широко использовалась на демонстрациях. Сосуд сделан из стеклянной чашки, помещенной между двумя довольно плотно прилегающими металлическими чашками. Когда сосуд заряжают высоким напряжением и осторожно разбирают, обнаруживается, что со всеми частями можно свободно обращаться, не разряжая сосуд. Если детали будут повторно собраны, от них все равно может появиться большая искра .

Эта демонстрация, по-видимому, предполагает, что конденсаторы хранят свой заряд внутри своего диэлектрика. Этой теории преподавали на протяжении 1800-х годов. Однако это явление представляет собой особый эффект, вызванный высоким напряжением на лейденской банке. В разъединяемой лейденской банке заряд переносится на поверхность стеклянной чашки за счет коронного разряда, когда банка разбирается; это источник остаточного заряда после повторной сборки банки. Работа с чашкой в ​​разобранном виде не обеспечивает достаточного контакта для удаления всего поверхностного заряда. Сода стекла является гигроскопичной и образует частично проводящее покрытие на своей поверхности, которая удерживает заряд. Адденбрук (1922) обнаружил, что в отсекаемом сосуде, сделанном из парафинового воска или стекла, обожженного для удаления влаги, заряд остается на металлических пластинах. Зеленый (1944) подтвердил эти результаты и наблюдал перенос заряда короны.

Количество заряда

Первоначально емкость измеряли в количестве « банок » заданного размера или по всей площади покрытия, предполагая разумно стандартную толщину и состав стекла. Типичная лейденская банка размером в одну пинту имеет емкость около 1 нФ .

Остаточная оплата

Если заряженная лейденская банка разряжена путем закорачивания внутреннего и внешнего покрытий и оставлена ​​на несколько минут, банка восстановит часть своего предыдущего заряда, и из нее может быть получена вторая искра. Часто это можно повторять, и через определенные промежутки времени можно получить серию из 4 или 5 искр, уменьшающихся по длине. Этот эффект вызван диэлектрическим поглощением .

Смотрите также

Примечания

использованная литература

внешние ссылки