Общая линейная модель - General linear model

Линейная модель или общая многомерная модель регрессии представляет собой компактный способ одновременной записи нескольких множественной линейной регрессии моделей. В этом смысле это не отдельная статистическая линейная модель . Различные модели множественной линейной регрессии можно компактно записать как

где Y - матрица с серией многомерных измерений (каждый столбец представляет собой набор измерений одной из зависимых переменных ), X - матрица наблюдений по независимым переменным, которая может быть матрицей плана (каждый столбец представляет собой набор наблюдений по одна из независимых переменных), B - матрица, содержащая параметры, которые обычно подлежат оценке, а U - матрица, содержащая ошибки (шум). Ошибки обычно считаются некоррелированными между измерениями и подчиняются многомерному нормальному распределению . Если ошибки не следует многомерному нормальному распределению, обобщенные линейные модели могут быть использованы для отдыха предположения относительно Y и U .

Общая линейная модель включает в себя ряд различных статистических моделей: ANOVA , ANCOVA , MANOVA , MANCOVA , обычную линейную регрессию , t- критерий и F- критерий . Общая линейная модель является обобщением множественной линейной регрессии на случай более чем одной зависимой переменной. Если бы Y , B и U были векторами-столбцами , приведенное выше матричное уравнение представляло бы множественную линейную регрессию.

Проверка гипотез с помощью общей линейной модели может проводиться двумя способами: многомерным или несколькими независимыми одномерными тестами. В многомерных тестах столбцы Y тестируются вместе, тогда как в одномерных тестах столбцы Y тестируются независимо, т. Е. Как несколько одномерных тестов с одной и той же матрицей дизайна.

Сравнение с множественной линейной регрессией

Множественная линейная регрессия - это обобщение простой линейной регрессии на случай более чем одной независимой переменной и частный случай общих линейных моделей, ограниченных одной зависимой переменной. Базовая модель множественной линейной регрессии:

для каждого наблюдения i = 1, ..., n .

В приведенной выше формуле мы рассматриваем n наблюдений одной зависимой переменной и p независимых переменных. Таким образом, Y i - i- е наблюдение зависимой переменной, X ij - i- е наблюдение j- й независимой переменной, j = 1, 2, ..., p . Значения β j представляют собой параметры, которые необходимо оценить, а ε i - это i- я независимая одинаково распределенная нормальная ошибка.

В более общей многомерной линейной регрессии существует одно уравнение приведенной выше формы для каждой из m > 1 зависимых переменных, которые имеют один и тот же набор независимых переменных и, следовательно, оцениваются одновременно друг с другом:

для всех наблюдений, индексированных как i = 1, ..., n, и для всех зависимых переменных, индексированных как j = 1, ..., m .

Обратите внимание, что, поскольку каждая зависимая переменная имеет свой собственный набор параметров регрессии, которые необходимо подогнать, с вычислительной точки зрения общая многомерная регрессия представляет собой просто последовательность стандартных множественных линейных регрессий с использованием одних и тех же независимых переменных.

Сравнение с обобщенной линейной моделью

Общая линейная модель и обобщенная линейная модель (GLM) - это два обычно используемых семейства статистических методов, чтобы связать некоторое количество непрерывных и / или категориальных предикторов с одной переменной результата .

Основное различие между двумя подходами состоит в том, что общая линейная модель строго предполагает, что остатки будут следовать условно нормальному распределению , в то время как GLM ослабляет это предположение и допускает множество других распределений из семейства экспоненциальных остатков. Следует отметить, что общая линейная модель является частным случаем GLM, в котором распределение остатков следует условно нормальному распределению.

Распределение остатков во многом зависит от типа и распределения переменной результата; различные типы переменных результата приводят к разнообразию моделей в семействе GLM. Обычно используемые модели в семействе GLM включают бинарную логистическую регрессию для бинарных или дихотомических результатов, регрессию Пуассона для результатов подсчета и линейную регрессию для непрерывных, нормально распределенных результатов. Это означает, что о GLM можно говорить как об общем семействе статистических моделей или как о конкретных моделях для конкретных типов результатов.

Общая линейная модель Обобщенная линейная модель
Типовой метод оценки Метод наименьших квадратов , лучший линейный несмещенный прогноз Максимальное правдоподобие или байесовское
Примеры ANOVA , ANCOVA , линейная регрессия линейная регрессия , логистическая регрессия , регрессия Пуассона , гамма-регрессия, общая линейная модель
Расширения и связанные методы MANOVA , MANCOVA , линейная смешанная модель обобщенная линейная смешанная модель (GLMM), обобщенные оценочные уравнения (GEE)
Пакет и функции R lm () в пакете статистики (базовый R) glm () в пакете статистики (базовый R)
Функция Matlab mvregress () glmfit ()
SAS процедуры PROC GLM , PROC REG PROC GENMOD , PROC LOGISTIC (для двоичных и упорядоченных или неупорядоченных категориальных результатов)
Команда Stata регресс glm
Команда SPSS регрессия , глм Генлин, логистика
Язык Wolfram Language и функция Mathematica LinearModelFit [] GeneralizedLinearModelFit []
EViews команда ls glm

Приложения

Применение общей линейной модели появляется при анализе нескольких сканирований мозга в научных экспериментах, где Y содержит данные со сканеров мозга, X содержит переменные плана эксперимента и искажения. Обычно он тестируется одномерным способом (обычно в данном случае называется массовым одномерным ) и часто называется статистическим параметрическим отображением .

Смотрите также

Примечания

использованная литература

  • Кристенсен, Рональд (2002). Плоские ответы на сложные вопросы: теория линейных моделей (Третье изд.). Нью-Йорк: Спрингер. ISBN 0-387-95361-2.
  • Вичура, Майкл Дж. (2006). Бескординатный подход к линейным моделям . Кембриджская серия по статистической и вероятностной математике. Кембридж: Издательство Кембриджского университета. С. xiv + 199. ISBN 978-0-521-86842-6. Руководство по ремонту  2283455 .
  • Роулингс, Джон О.; Pantula, Sastry G .; Дики, Дэвид А., ред. (1998). «Прикладной регрессионный анализ». Тексты Springer в статистике. DOI : 10.1007 / b98890 . ISBN 0-387-98454-2. Цитировать журнал требует |journal=( помощь )