Анизотропия флуоресценции - Fluorescence anisotropy

Анизотропия флуоресценции или поляризация флуоресценции - это явление, при котором свет, излучаемый флуорофором, имеет неодинаковую интенсивность по разным осям поляризации . Первыми пионерами в этой области являются Александр Яблонски , Грегорио Вебер и Андреас Альбрехт. Принципы поляризации флуоресценции и некоторые применения метода представлены в книге Лаковича.

Определение анизотропии флуоресценции

Флуоресцентная поляризация Anisotropy.png

Анизотропии (г) источника света определяется как отношение поляризованного компонента к полной интенсивности ( ):

Когда возбуждение поляризовано вдоль оси z, излучение флуорофора симметрично относительно оси z (рисунок). Следовательно, статистически мы имеем . Поскольку , и , мы имеем

.

Принцип - броуновское движение и фотоотбор

Броуновское движение наночастицы.

При флуоресценции молекула поглощает фотон и возбуждается до более высокого энергетического состояния. После короткой задержки (среднее значение, представленное как время жизни флуоресценции ), он переходит в более низкое состояние, теряя часть энергии в виде тепла и излучая остальную энергию в виде другого фотона. Возбуждения и высвечивании предполагают перераспределение электронов вокруг молекулы. Следовательно, возбуждение фотоном может происходить только в том случае, если электрическое поле света ориентировано по определенной оси вокруг молекулы. Кроме того, испускаемый фотон будет иметь определенную поляризацию по отношению к молекуле.

Первое понятие, которое необходимо понять для измерения анизотропии, - это концепция броуновского движения . Хотя вода комнатной температуры, содержащаяся в стакане, для глаза может выглядеть очень неподвижной, на молекулярном уровне каждая молекула воды обладает кинетической энергией, и, следовательно, между молекулами воды происходит непрерывное количество столкновений. Наночастица (желтая точка на рисунке), подвешенная в растворе, будет совершать случайное блуждание из-за суммирования этих основных столкновений. Время корреляции вращения ( Φ r ), время, необходимое для поворота молекулы на 1 радиан, зависит от вязкости ( η ), температуры (T), постоянной Больцмана ( k B ) и объема ( V ) наночастицы:

Вторая концепция - это фотоселляция с использованием поляризованного света. Когда поляризованный свет применяется к группе случайно ориентированных флуорофоров, большинство возбужденных молекул будут теми, которые ориентированы в определенном диапазоне углов по отношению к приложенной поляризации. Если они не перемещаются, излучаемый свет также будет поляризован в определенном диапазоне углов по отношению к приложенному свету.

Для однофотонного возбуждения собственная анизотропия r 0 имеет максимальное теоретическое значение 0,4, когда диполи возбуждения и излучения параллельны, и минимальное значение -0,2, когда диполи возбуждения и излучения перпендикулярны.

где β - угол между диполями возбуждения и излучения. Для измерения стационарной флуоресценции ее обычно измеряют путем встраивания флуорофора в замороженный полиол .

В простейшем идеалистическом случае подмножество молекул красителя, суспендированных в растворе, имеет моноэкспоненциальное время жизни флуоресценции и r 0 = 0,4 (родамин 6 г в этиленгликоле, имеющий оптическую плотность ~ 0,05, является хорошим тестовым образцом). Если возбуждение неполяризовано, то измеренное флуоресцентное излучение также должно быть неполяризованным. Однако, если источник возбуждения вертикально поляризован с использованием поляризатора возбуждения, то эффекты поляризации будут обнаружены в измеренной флуоресценции. С этими поляризационными артефактами можно бороться, поместив поляризатор излучения под магическим углом 54,7 °. Если эмиссионный поляризатор вертикально поляризован, будет дополнительная потеря флуоресценции, поскольку броуновское движение приводит к перемещению молекул красителя из исходной вертикально поляризованной конфигурации в неполяризованную конфигурацию. С другой стороны, если поляризатор излучения горизонтально поляризован, произойдет дополнительное введение возбужденных молекул, которые изначально были вертикально поляризованы и стали деполяризованными в результате броуновского движения. Сумма и разность флуоресценции могут быть построены путем сложения интенсивностей и вычитания интенсивностей флуоресценции соответственно:

Разделив разницу на сумму, получим спад анизотропии:

Фактор решетки G - инструментальное предпочтение эмиссионной оптики для горизонтальной ориентации вертикальной ориентации. Его можно измерить, переместив поляризатор возбуждения в горизонтальную ориентацию и сравнив интенсивности, когда поляризатор излучения имеет вертикальную и горизонтальную поляризацию соответственно.

G зависит от длины волны излучения. Примечание G в литературе определяется как показано обратное.

Степень декорреляции в поляризации падающего и излучаемого света зависит от того, насколько быстро ориентация флуорофора искажается (время вращения ) по сравнению со временем жизни флуоресценции ( ). Перестановка ориентаций может происходить из-за переворачивания всей молекулы или вращения только флуоресцентной части. Скорость опрокидывания связана с измеренной анизотропией уравнением Перрина:

Где r - наблюдаемая анизотропия, r 0 - собственная анизотропия молекулы, - время жизни флуоресценции и время вращательной корреляции.

Этот анализ действителен, только если флуорофоры расположены относительно далеко друг от друга. Если они очень близки друг к другу, они могут обмениваться энергией посредством FRET, и поскольку излучение может происходить от одной из многих независимо движущихся (или ориентированных) молекул, это приводит к более низкой, чем ожидалось, анизотропии или большей декорреляции. Этот тип гомотрансферного резонансного переноса энергии Фёрстера называется миграцией энергии FRET или emFRET .

Анизотропия стационарной флуоресценции дает только «среднюю» анизотропию. Гораздо больше информации можно получить с помощью анизотропии флуоресценции с временным разрешением, когда время затухания, остаточная анизотропия и время корреляции вращения можно определить путем подбора спада анизотропии. Обычно для возбуждения используется лазерный источник с вертикальными импульсами, а электроника синхронизации добавляется между стартовыми импульсами лазера (пуск) и измерением фотонов флуоресценции (стоп). Обычно используется метод коррелированного по времени подсчета одиночных фотонов (TCSPC).

Снова используем простейший идеалистический случай - подмножество молекул красителя, взвешенных в растворе, которые имеют моноэкспоненциальное время жизни флуоресценции и начальную анизотропию r 0 = 0,4. Если образец возбуждается импульсным вертикально ориентированным источником возбуждения, то следует измерять время одиночного затухания, когда эмиссионный поляризатор находится под магическим углом. Если эмиссионный поляризатор имеет вертикальную поляризацию, вместо этого будут измеряться два времени затухания с положительными предэкспоненциальными множителями, первое время затухания должно быть эквивалентно измеренному с использованием неполяризованного излучения, а второе время затухания будет связано с потерей флуоресценция как броуновское движение приводит к тому, что молекулы красителя переходят из исходной вертикальной поляризованной конфигурации в неполяризованную. С другой стороны, если эмиссионный поляризатор поляризован по горизонтали, два времени затухания снова будут восстановлены: первое с положительным предэкспоненциальным множителем и будет эквивалентно, но второе будет иметь отрицательный предэкспоненциальный множитель, являющийся результатом введение возбужденных молекул, которые изначально были вертикально поляризованы и стали деполяризованными в результате броуновского движения. Сумма и разность флуоресценции могут быть построены путем сложения затуханий и вычитания затуханий флуоресценции соответственно:

Разделив разницу на сумму, получим спад анизотропии:

В простейшем случае только для одного вида сферического красителя:

Приложения

Анизотропия флуоресценции может использоваться для измерения констант связывания и кинетики реакций, вызывающих изменение времени вращения молекул. Если флуорофор представляет собой небольшую молекулу, скорость его вращения может значительно снизиться, когда он связан с большим белком. Если флуорофор присоединен к большему белку в паре связывания, разница в поляризации между связанным и несвязанным состояниями будет меньше (поскольку несвязанный белок уже будет достаточно стабильным и с самого начала будет медленно вращаться), и измерение будет менее точным. . Степень связывания рассчитывается с использованием разницы в анизотропии частично связанного, свободного и полностью связанного (большой избыток белка) состояний, измеренной путем титрования двух партнеров связывания.

Если флуорофор связан с относительно большой молекулой, такой как белок или РНК, изменение подвижности, сопровождающее укладку, можно использовать для изучения динамики сворачивания. Это позволяет оценить динамику достижения белком своей окончательной стабильной трехмерной формы.

Анизотропия флуоресценции также применяется в микроскопии с использованием поляризаторов на пути освещающего света, а также перед камерой. Это можно использовать для изучения локальной вязкости цитозоля или мембран, причем последние дают информацию о микроструктуре мембраны и относительных концентрациях различных липидов. Этот метод также использовался для обнаружения связывания молекул с их партнерами в сигнальных каскадах в ответ на определенные сигналы.

Феномен emFRET и связанное с ним уменьшение анизотропии, когда происходят тесные взаимодействия между флуорофорами, был использован для изучения агрегации белков в ответ на передачу сигналов.

Смотрите также

Ссылки